Перевод: со всех языков на английский

с английского на все языки

Vacuum tubes which

  • 1 приводить в движение

    Vacuum tubes which activate the mechanisms...

    The relay serves to actuate the dial mechanism of the clock.

    This initiates the operation of the governor mechanism.

    The motors operate the caterpillar tracks.

    A separate motor powers the hydraulic pumps.

    When the machine member is set (or put) in motion,...

    The rocket is propelled in the same way.

    Русско-английский научно-технический словарь переводчика > приводить в движение

  • 2 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 3 Forrester, Jay Wright

    [br]
    b. 14 July 1918 Anselmo, Nebraska, USA
    [br]
    American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.
    [br]
    Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.
    [br]
    Principal Honours and Distinctions
    National Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.
    Bibliography
    1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).
    Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.
    Further Reading
    K.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).
    H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).
    Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute of
    Radio Engineers 1,047.
    M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Forrester, Jay Wright

  • 4 электронная лампа

    1. electronic tube
    2. electron tube

     

    электронная лампа
    Прибор, состоящий из герметичного стеклянного корпуса, внутри которого расположены анод и катод.
    Раньше в схемах компьютеров, телевизоров и радиоприемников широко использовались электронные лампы. Их вытеснили транзисторы, а затем - Интегральные Схемы (ИС). В настоящее время широко используется большая электронная лампа, именуемая Электронно-Лучевой Трубкой (ЭЛТ). Кроме этого, электронные лампы применяются в ряде схем.
    [Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса]
    [ http://www.morepc.ru/dict/]

    электронная лампа
    -
    [IEV number 151-13-60]

    EN

    electronic tube
    device in which electric conduction takes place by movement of electrons or ions between electrodes through a vacuum or gaseous medium within a gas-tight envelope
    NOTE – Examples of electronic tubes are triodes, tetrodes, cathode-ray tubes. Excluded are several specific devices, e.g. particle accelerators, electronic microscopes, tubes for lighting, gas lasers.
    Source: 531-11-02 MOD
    [IEV number 151-13-60]

    FR

    tube électronique, m
    dispositif dans lequel la conduction électrique est assurée par un déplacement d'électrons ou d'ions entre des électrodes, dans le vide ou dans un milieu gazeux, à l'intérieur d'une enveloppe étanche aux gaz
    NOTE – Des exemples de tubes électroniques sont les triodes, les tétrodes, les tubes cathodiques. Sont exclus divers dispositifs particuliers tels que les accélérateurs de particules, les microscopes électroniques, les tubes d'éclairage, les lasers à gaz.
    Source: 531-11-02 MOD
    [IEV number 151-13-60]

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > электронная лампа

См. также в других словарях:

  • List of vacuum tubes — This is a list of vacuum tubes or thermionic valves. Before the advent of semiconductor devices, hundreds of tube types were used in consumer and industrial electronics; today only a few types are still used in specialized applications. Contents… …   Wikipedia

  • Vacuum tube — This article is about the electronic device. For experiments in an evacuated pipe, see free fall. For the transport system, see pneumatic tube. Modern vacuum tubes, mostly miniature style In electronics, a vacuum tube, electron tube (in North… …   Wikipedia

  • Vacuum — This article is about empty physical space or the absence of matter. For other uses, see Vacuum (disambiguation). Free space redirects here. For other uses, see Free space (disambiguation). Pump to demonstrate vacuum In everyday usage, vacuum is… …   Wikipedia

  • Vacuum cleaner — Cylinder vacuum cleaner for home use. French train vacuum cleaner …   Wikipedia

  • Vacuum distillation — At atmospheric pressure, dimethyl sulfoxide boils at 189°C. Under a vacuum, it distills off into the connected receiver at only 70°C. Vacuum distillation is a method of distillation whereby the pressure above the liquid mixture to be distilled is …   Wikipedia

  • Vacuum fluorescent display — A vacuum fluorescent display (VFD) is a display device used commonly on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens. Unlike liquid crystal displays, a VFD emits a very bright light with clear… …   Wikipedia

  • vacuum tube — 1. Also called, esp. Brit., vacuum valve. an electron tube from which almost all air or gas has been evacuated: formerly used extensively in radio and electronics. 2. a sealed glass tube with electrodes and a partial vacuum or a highly rarefied… …   Universalium

  • vacuum-tube voltmeter — noun : a voltmeter employing vacuum tubes and useful because of its very high input impedence for measurements in circuits (as vacuum tube circuits) from which only very small currents can be drawn without altering the voltages being measured …   Useful english dictionary

  • Vacuum aspiration — Background Abortion type Surgical First use China 1958 and UK 1967[1] Gestation 3 12 weeks Usage …   Wikipedia

  • vacuum technology — Introduction       all processes and physical measurements carried out under conditions of below normal atmospheric pressure. A process or physical measurement is generally performed in a vacuum for one of the following reasons: (1) to remove the …   Universalium

  • Vacuum flange — Conflat redirects here. For other uses, see Conflat (disambiguation). A KF 25 tee, o ring, and clamp. A vacuum flange is a flange at the end of a tube used to connect vacuum chambers, tubing and vacuum pumps to each other. Contents …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»